

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

ND 621 % 95.6 % Not Tested Date Tested Status ND 621 % 95.6 % 10/27/2023 10/32/2023 10/32/2023 10/32/2023 Passed ND 621 % 95.6 % Not Tested Not Tested Passed Total 20-THC 621 % 95.6 % Not Tested Foreign Matter Internal Standar ND 621 % 95.6 % Total Content Foreign Matter Internal Standar Total 20-THC 621 % 0005 00284 Not Tested Foreign Matter Internal Standar Nonget 009 00284 ND ND ND ND Sec 0095 00284 ND ND ND ND Sec 0095 00284 ND ND ND ND ND Sec 00061 00284 ND ND ND ND ND Sec 0065 00284 ND ND ND ND ND ND	hc mple ID: SA-231012-2 atch: hc8-hhc-1123 pe: In-Process Materia atrix: Concentrate - D hit Mass (g):	al	Received: 10/17 Completed: 10,		Client Highly Conce 1919 Northgat Sarasota, FL 3 USA Lic, #: 2021-N-	e Blvd 4234
Total Δ9-THC (6аR,9R,10aR)-HHC Total Cannabinoids Moisture Content Foreign Matter Internal Standar Normalization cannabinoids HPLC-PDA art/or GC-MS//V Result Result (%) Result				Test Cannabinoids Heavy Metals Microbials Mycotoxins Pesticides	Date Tested 10/27/2023 10/20/2023 10/20/2023 10/19/2023 10/19/2023	Tested Passed Passed Passed Passed
LOD LOQ Result Result (mg/g) nalyte 0,0095 0,0284 ND ND BC 0,0095 0,0284 ND ND BCA 0,0181 0,0543 ND ND BC 0,0095 0,0284 ND ND BCA 0,0181 0,0543 ND ND BCA 0,0061 0,0182 ND ND BDA 0,0021 0,0063 ND ND BDVA 0,0021 0,0063 ND ND BCA 0,0021 0,0072 ND ND BCA 0,0021 0,0035 ND ND BCA 0,0024 0,0177 ND ND BCA 0,0124 0,0371 ND ND <t< th=""><th>ND</th><th>62.1 %</th><th>95.6 %</th><th>Not Tested</th><th>Not Tested</th><th>Yes</th></t<>	ND	62.1 %	95.6 %	Not Tested	Not Tested	Yes
LOD LOQ Result Result (%) ND <	Total A9-THC	(6aR.9R.10aR)-HHC	Total Cannabinoids	Moisture Conten	t Foreign Matter	Internal Standard
marge (%) (%) (%) (%) (mg/g) BC 0.0095 0.0284 ND ND ND BCA 0.0181 0.0543 ND ND ND BCV 0.0066 0.018 ND ND ND BD 0.0081 0.0242 ND ND ND BDA 0.0043 0.0132 ND ND ND BDV 0.0061 0.0182 ND ND ND BDV 0.0021 0.0063 ND ND ND BC 0.0027 0.0172 ND ND ND BGA 0.0027 0.0172 ND ND ND BGA 0.0124 0.0335 ND ND ND BL 0.0124 0.0371 ND ND ND BNA 0.0056 0.0169 ND ND ND BT 0.018 0.054 ND ND					i i i i i i i i i i i i i i i i i i i	Normalization
BC 0.0095 0.0284 ND ND ND BCA 0.0181 0.0543 ND ND ND BCV 0.006 0.018 ND ND ND BD 0.0081 0.0242 ND ND ND BDA 0.0043 0.013 ND ND ND BDV 0.0061 0.0182 ND ND ND BDV 0.0021 0.0063 ND ND ND BGA 0.0027 0.0172 ND ND ND BGA 0.0021 0.0335 ND ND ND BGA 0.0124 0.0371 ND ND ND BL 0.0124 0.0371 ND ND ND BN 0.0056 0.0169 ND ND ND BT 0.0164 0.0312 ND ND ND 9-THC 0.0164 0.0227 ND ND		by HPLC-PDA a	nd/or GC-MS/	MS		Normalization
BCV 0.006 0.018 ND ND BD 0.0081 0.0242 ND ND BDA 0.0043 0.013 ND ND BDV 0.0061 0.0182 ND ND BDVA 0.0021 0.0063 ND ND BCV 0.0027 0.0172 ND ND BCA 0.0057 0.0172 ND ND BCA 0.0124 0.0335 ND ND BLA 0.0124 0.0371 ND ND BN 0.0056 0.0181 ND ND BN 0.0066 0.0181 ND ND BN 0.0066 0.0181 ND ND BT 0.018 0.054 ND ND BT 0.018 0.027 ND ND BT 0.0164 0.0212 ND ND BT 0.0067 0.0225 ND ND	annabinoids	by HPLC-PDA a	nd/or GC-MS/	MS LOQ	Result	Normalization
BD 0.0081 0.0242 ND ND BDA 0.0043 0.013 ND ND BDV 0.0061 0.0182 ND ND BDVA 0.0021 0.0063 ND ND BCA 0.0021 0.0063 ND ND BCA 0.0021 0.0063 ND ND BCA 0.0021 0.0172 ND ND BCA 0.0049 0.0172 ND ND BCA 0.0049 0.0147 ND ND BCA 0.0124 0.0335 ND ND BLA 0.0124 0.0371 ND ND BN 0.0056 0.0169 ND ND BNA 0.0066 0.0181 ND ND BT 0.018 0.054 ND ND BT 0.0164 0.0227 ND ND BT 0.0069 0.0206 ND ND	annabinoids _{nalyte}	by HPLC-PDA a	nd/or GC-MS/	MS LOQ (%)	Result (%)	Result (mg/g)
BDA 0.0043 0.013 ND ND ND BDV 0.0061 0.0182 ND ND ND BDVA 0.0021 0.0063 ND ND ND BCA 0.0027 0.0172 ND ND ND BCA 0.0057 0.0172 ND ND ND BCA 0.0049 0.0147 ND ND ND BL 0.012 0.0335 ND ND ND BLA 0.0124 0.0371 ND ND ND BNA 0.0056 0.0169 ND ND ND BNA 0.0066 0.0181 ND ND ND BT 0.018 0.054 ND ND ND BT 0.018 0.0227 ND ND ND D-THC 0.0069 0.0206 ND ND ND D-THCV 0.0069 0.0206 ND ND	annabinoids nalyte 3C	by HPLC-PDA a	nd/or GC-MS/ LOD (%) 2.0095	MS LOQ (%) 0.0284	Result (%) ND	Result (mg/g) ND
BDV 0.0061 0.0182 ND ND BDVA 0.0021 0.0063 ND ND BC 0.0057 0.0172 ND ND BC 0.0049 0.0147 ND ND BL 0.012 0.0335 ND ND BLA 0.0124 0.0371 ND ND BNA 0.0056 0.0169 ND ND BNA 0.006 0.0181 ND ND BT 0.018 0.054 ND ND BT 0.0066 0.0181 ND ND BT 0.018 0.054 ND ND BT 0.0066 0.0181 ND ND BT 0.0076 0.0227 ND ND D-THC 0.0069 0.0206 ND ND D-THCV 0.0069 0.0206 ND ND D-THCVA 0.0062 0.0186 ND ND	annabinoids nalyte 3C 3CA	by HPLC-PDA an	nd/or GC-MS/ LOD (%) 0.0095 0.0181	MS LOQ (%) 0.0284 0.0543	Result (%) ND ND	Result (mg/g) ND ND ND
BDVA 0.0021 0.0063 ND ND 3G 0.0057 0.0172 ND ND 3GA 0.0049 0.0147 ND ND 3L 0.0112 0.0335 ND ND 3LA 0.0124 0.0371 ND ND 3N 0.0056 0.0169 ND ND 3N 0.0066 0.0181 ND ND 3NA 0.0076 0.0312 ND ND 3T 0.018 0.054 ND ND 3-THC 0.0104 0.0312 ND ND 3-THC 0.0076 0.0227 ND ND 3-THC 0.0084 0.0251 ND ND 3-THC 0.0084 0.0221 ND ND 3-THC 0.0069 0.0206 ND ND 3-THC 0.0069 0.0206 ND ND 3-THC 0.0069 0.0206 ND ND <td>annabinoids nalyte 3C 3CA 3CV</td> <td>by HPLC-PDA an</td> <td>nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006</td> <td>MS LOQ (%) 0.0284 0.0543 0.018</td> <td>Result (%) ND ND ND ND</td> <td>Result (mg/g) ND ND ND ND ND</td>	annabinoids nalyte 3C 3CA 3CV	by HPLC-PDA an	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006	MS LOQ (%) 0.0284 0.0543 0.018	Result (%) ND ND ND ND	Result (mg/g) ND ND ND ND ND
BG 0.0057 0.0172 ND ND BGA 0.0049 0.0147 ND ND BL 0.0112 0.0335 ND ND BLA 0.0124 0.0371 ND ND BN 0.0056 0.0169 ND ND BNA 0.0066 0.0181 ND ND BT 0.0194 0.0312 ND ND BT 0.018 0.054 ND ND BT 0.0164 0.0312 ND ND DO-THC 0.0076 0.0227 ND ND DO-THC V 0.0069 0.0206 ND ND DO-THCV 0.0069 0.0206 ND ND DO-THCVA 0.0062 0.0186 ND ND DO-THCVA 0.0067 0.02 621 621	annabinoids nalyte 3C 3CA 3CV 3D	by HPLC-PDA and	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081	MS LOQ (%) 0.0284 0.0543 0.018 0.0242	Result (%) ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND
BGA 0.0049 0.0147 ND ND BL 0.0112 0.0335 ND ND BLA 0.0124 0.0371 ND ND BN 0.0056 0.0169 ND ND BNA 0.0066 0.0181 ND ND BT 0.018 0.054 ND ND BT 0.0104 0.0312 ND ND DO-THC 0.0076 0.0227 ND ND DO-THCA 0.0069 0.0206 ND ND DO-THCV 0.0069 0.0206 ND ND DO-THCVA 0.0062 0.0186 ND ND DO-THCVA 0.0067 0.02 621 621	annabinoids halyte BC BCA BCV BD BDA	by HPLC-PDA and	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013	Result (%) ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND
BL 0.0112 0.0335 ND ND BLA 0.0124 0.0371 ND ND BN 0.0056 0.0169 ND ND BNA 0.0066 0.0181 ND ND BT 0.018 0.054 ND ND BT 0.0104 0.0312 ND ND BT 0.0076 0.0227 ND ND DOTHC 0.0084 0.0251 ND ND DOTHC 0.0069 0.0206 ND ND DOTHCV 0.0062 0.0186 ND ND DOTHCVA 0.0067 0.02 621 621	annabinoids halyte BC BCA BC BD BDA BDA BDV	by HPLC-PDA and	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182	Result (%) ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND
BLA 0.0124 0.0371 ND ND SN 0.0056 0.0169 ND ND SNA 0.006 0.0181 ND ND ST 0.018 0.054 ND ND ST 0.018 0.054 ND ND STTC 0.0104 0.0312 ND ND O-THC 0.0076 0.0227 ND ND O-THCA 0.0069 0.0206 ND ND O-THCV 0.0062 0.0186 ND ND O-THCVA 0.0062 0.0186 ND ND STHCVA 0.0067 0.02 621 621	annabinoids halyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DVA 3G	by HPLC-PDA and the second sec	nd/or GC-MS/ (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0043 0.0061 0.0021 0.0021 0.0057	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063	Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND
BN 0.0056 0.0169 ND ND BNA 0.006 0.0181 ND ND BT 0.018 0.054 ND ND BT 0.018 0.054 ND ND BT 0.0104 0.0312 ND ND D-THC 0.0076 0.0227 ND ND D-THCA 0.0084 0.0251 ND ND D-THCV 0.0069 0.0206 ND ND D-THCVA 0.0062 0.0186 ND ND BR,9R,10aR)-HHC 0.0067 0.02 621 621	annabinoids nalyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3G 3G	by HPLC-PDA and the second sec	nd/or GC-MS/ (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172	Result (%) ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND
BNA 0.006 0.0181 ND ND BT 0.018 0.054 ND ND BT 0.018 0.054 ND ND BT 0.0104 0.0312 ND ND D-THC 0.0076 0.0227 ND ND D-THCA 0.0069 0.0206 ND ND D-THCV 0.0062 0.0186 ND ND D-THCVA 0.0067 0.02 621 621	annabinoids nalyte BC BCA BC BCA BCV BD BDA BDV BDVA BCA BCA BCA BCA BCA BCA BCA	by HPLC-PDA and the second sec	nd/or GC-MS/ (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
BT 0.018 0.054 ND ND 3-THC 0.0104 0.0312 ND ND 0-THC 0.0076 0.0227 ND ND 0-THCA 0.0084 0.0251 ND ND 0-THCV 0.0069 0.0206 ND ND 0-THCVA 0.0062 0.0186 ND ND 0-THCVA 0.0067 0.02 621 621	annabinoids nalyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3C 3CA 3C 3CA 3C 3CA 3CA 3CA 3CA 3CA	by HPLC-PDA and the second sec	nd/or GC-MS/ (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
B-THC 0.0104 0.0312 ND ND O-THC 0.0076 0.0227 ND ND O-THCA 0.0084 0.0251 ND ND O-THCV 0.0069 0.0206 ND ND O-THCVA 0.0062 0.0186 ND ND aR,9R,10aR)-HHC 0.0067 0.02 621 621	annabinoids nalyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DA 3DA 3DV 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
O-THC 0.0076 0.0227 ND ND O-THCA 0.0084 0.0251 ND ND O-THCV 0.0069 0.0206 ND ND O-THCVA 0.0062 0.0186 ND ND aR,9R,10aR)-HHC 0.0067 0.02 621 621	annabinoids nalyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV	by HPLC-PDA and the second sec	nd/or GC-MS/ (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.012 0.0124 0.0056 0.006	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
O-THCA 0.0084 0.0251 ND ND O-THCV 0.0069 0.0206 ND ND O-THCVA 0.0062 0.0186 ND ND aR,9R,10aR)-HHC 0.0067 0.02 621 621	annabinoids nalyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DA 3DA 3DV 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.012 0.0124 0.0056 0.006 0.006 0.006	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
O-THCV 0.0069 0.0206 ND ND O-THCVA 0.0062 0.0186 ND ND aR,9R,10aR)-HHC 0.0067 0.02 621 621	annabinoids nalyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0124 0.0056 0.006 0.006 0.018 0.018 0.0104	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
P-THCVA 0.0062 0.0186 ND ND a R,9R,10a R)-HHC 0.0067 0.02 62.1 621	annabinoids halyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.018 0.0104 0.0104 0.0076	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.0227	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
aR,9R,10aR)-HHC 0.0067 0.02 62.1 62.1	annabinoids halyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DA 3DV 3DA 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.018 0.0104 0.0104 0.0076 0.0084	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.0227 0.0251	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
	annabinoids halyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DA 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.0104 0.0104 0.0076 0.0084 0.0069	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.0242 0.0251 0.0206	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND N
ia R,9S,10a R)-HHC 0.0067 0.02 33.5 335	annabinoids halyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.0104 0.006 0.018 0.0104 0.0076 0.0084 0.0069 0.0062	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.027 0.0251 0.0206 0.0186	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND N
	annabinoids halyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DV 3DA 3A 3D 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.0104 0.0018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.006 0.018 0.006 0.0084 0.0069 0.0062 0.0067	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.0227 0.0251 0.0206 0.0186 0.02	Result (%) ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND N
ND ND ND otal 95.6 956	annabinoids halyte 3C 3CA 3CV 3D 3DA 3DV 3DV 3DVA 3G 3GA 3L 3LA 3N 3NA 3T 3-THC 3-TH	by HPLC-PDA and the second sec	nd/or GC-MS/ LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.0104 0.0018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.0104 0.0056 0.006 0.018 0.006 0.018 0.006 0.0084 0.0069 0.0062 0.0067	MS LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.0312 0.0227 0.0251 0.0206 0.0186 0.02	Result (%) ND ND ND S ND S	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND N

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 10/27/2023

Tested By: Scott Caudill Laboratory Manager Date: 10/27/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

hhc Client Sample ID: SA-231012-28285 Highly Concentr8ed Batch: hc8-hhc-1123 Received: 10/17/2023 1919 Northgate Blvd Type: In-Process Material Completed: 10/27/2023 Sarasota, FL 34234 Matrix: Concentrate - Distillate USA Unit Mass (g): Lic. #: 2021-N-1909467 Heavy Metals by ICP-MS Analyte LOD (ppb) LOQ (ppb) Result (ppb) P/F Arsenic Ρ 20 ND Ρ Cadmium 20 ND 2 Ρ 20 Lead ND Ρ Mercury 12 50 ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 10/27/2023

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 10/20/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

hhc

Sample ID: SA-231012-28285 Batch: hc8-hhc-1123 Type: In-Process Material Matrix: Concentrate - Distillate Unit Mass (g):

Received: 10/17/2023 Completed: 10/27/2023 Client Highly Concentr8ed 1919 Northgate Blvd Sarasota, FL 34234 USA Lic. #: 2021-N-1909467

Pesticides by LC-MS/MS

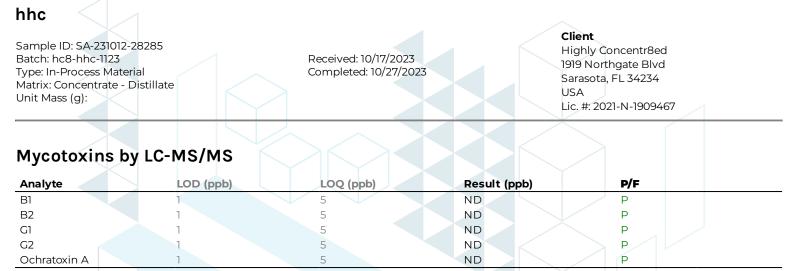
Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	P/F	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	P/F
Acephate	30	100	ND	Ρ	Hexythiazox	30	100	ND	Ρ
Acetamiprid	30	100	ND	Ρ	Imazalil	30	100	ND	Ρ
Aldicarb	30	100	ND	Р	Imidacloprid	30	100	ND	Ρ
Azoxystrobin	30	100	ND	Р	Kresoxim methyl	30	100	ND	Ρ
Bifenazate	30	100	ND	Р	Malathion	30	100	ND	Ρ
Bifenthrin	30	100	ND	Р	Metalaxyl	30	100	ND	Ρ
Boscalid	30	100	ND	Р	Methiocarb	30	100	ND	Ρ
Carbaryl	30	100	ND	Р	Methomyl	30	100	ND	Ρ
Carbofuran	30	100	ND	Ρ	Mevinphos	30	100	ND	Ρ
Chloranthraniliprole	30	100	ND	Р	Myclobutanil	30	100	ND	Ρ
Chlorfenapyr	30	100	ND	Р	Naled	30	100	ND	Ρ
Chlorpyrifos	30	100	ND	Р	Oxamyl	30	100	ND	Ρ
Clofentezine	30	100	ND	Р	Paclobutrazol	30	100	ND	Ρ
Coumaphos	30	100	ND	Р	Phosmet	30	100	ND	Ρ
Daminozide	30	100	ND	Р	Piperonyl Butoxide	30	100	ND	Ρ
Diazinon	30	100	ND	Р	Prallethrin	30	100	ND	Ρ
Dichlorvos	30	100	ND	Р	Propiconazole	30	100	ND	Ρ
Dimethoate	30	100	ND	Р	Propoxur	30	100	ND	Ρ
Dimethomorph	30	100	ND	Р	Pyrethrins	30	100	ND	Ρ
Ethoprophos	30	100	ND	Р	Pyridaben	30	100	ND	Ρ
Etofenprox	30	100	ND	Р	Spinetoram	30	100	ND	Ρ
Etoxazole	30	100	ND	Р	Spinosad	30	100	ND	Ρ
Fenhexamid	30	100	ND	Р	Spiromesifen	30	100	ND	Ρ
Fenoxycarb	30	100	ND	Р	Spirotetramat	30	100	ND	Ρ
Fenpyroximate	30	100	ND	Р	Spiroxamine	30	100	ND	Ρ
Fipronil	30	100	ND	P	Tebuconazole	30	100	ND	Ρ
Flonicamid	30	100	ND	Р	Thiacloprid	30	100	ND	Ρ
Fludioxonil	30	100	ND	P	Thiamethoxam	30	100	ND	Ρ
					Trifloxystrobin	30	100	ND	Ρ

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 10/27/2023

llunt Tested By: Jasper van Heemst

sted By: Jasper van Heem Principal Scientist Date: 10/19/2023



This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 10/27/2023

Humes Tested By: Jasper van Heemst

ested By: Jasper van Heem: Principal Scientist Date: 10/19/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

1

1

P

Ρ

Not Detected per 1 gram

Not Detected per 1 gram

5 of 7

hhc

Salmonella spp.

Shiga-toxin producing E. coli (STEC)

Sample ID: SA-231012-28285 Batch: hc8-hhc-1123 Type: In-Process Material Matrix: Concentrate - Distillate Unit Mass (g):		rd: 10/17/2023 ted: 10/27/2023	Client Highly Concent 1919 Northgate Sarasota, FL 34: USA Lic. #: 2021-N-19	Blvd 234	
Microbials by PCR and I	Plating				
Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)	P/F	
Total aerobic count	10	ND		Р	
Total coliforms	10	ND		Р	
Generic E. coli	10	ND		Р	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 10/27/2023

Tested By: Mario Aguirre

Tested By: Mario Aguirn Lab Technician Date: 10/20/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

hhc

Sample ID: SA-231012-28285 Batch: hc8-hhc-1123 Type: In-Process Material Matrix: Concentrate - Distillate Unit Mass (g):

Received: 10/17/2023 Completed: 10/27/2023 Client Highly Concentr8ed 1919 Northgate Blvd Sarasota, FL 34234 USA Lic. #: 2021-N-1909467

Residual Solvents by HS-GC-MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	P/F	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	P/F
Acetone	167	500	ND	Р	Ethylene Oxide	0.5	71	ND	Р
Acetonitrile	14	41	ND	Ρ	Heptane	167	500	ND	Ρ
Benzene	0.5	1	ND	Ρ	n-Hexane	10	29	ND	Ρ
Butane	167	500	ND	Р	Isobutane	167	500	ND	Ρ
1-Butanol	167	500	ND	Р	Isopropyl Acetate	167	500	ND	Ρ
2-Butanol	167	500	ND	Р	Isopropyl Alcohol	167	500	ND	Ρ
2-Butanone	167	500	ND	Р	Isopropylbenzene	167	500	ND	Ρ
Chloroform	2	6	ND	P	Methanol	100	300	ND	Ρ
Cyclohexane	129	388	ND	Р	2-Methylbutane	10	29	ND	Ρ
1,2-Dichloroethane	0.5	1	ND	Ρ	Methylene Chloride	20	60	ND	Ρ
1,2-Dimethoxyethane	4	10	ND	Р	2-Methylpentane	10	29	ND	Ρ
Dimethyl Sulfoxide	167	500	ND	Р	3-Methylpentane	10	29	ND	Ρ
N,N-Dimethylacetamide	37	109	ND	Р	n-Pentane	167	500	ND	Ρ
2,2-Dimethylbutane	10	29	ND	Р	1-Pentanol	167	500	ND	Ρ
2,3-Dimethylbutane	10	29	ND	Р	n-Propane	167	500	ND	Ρ
N,N-Dimethylformamide	30	88	ND	Р	1-Propanol	167	500	ND	Ρ
2,2-Dimethylpropane	167	500	ND	Р	Pyridine	7	20	ND	Ρ
1,4-Dioxane	13	38	ND	Р	Tetrahydrofuran	24	72	ND	Ρ
Ethanol	167	500	ND	Р	Toluene	30	89	ND	Ρ
2-Ethoxyethanol	6	16	ND	Р	Trichloroethylene	3	8	ND	Ρ
Ethyl Acetate	167	500	ND	Р	Xylenes (o-, m-, and p-)	73	217	ND	Ρ
Ethyl Ether	167	500	ND	Р					
Ethylbenzene	3	7	ND	Р					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 10/27/2023

Tested By: Kelsey Rogers Scientist

Date: 10/27/2023 Date: 10/19/2023 Date: 10/19/2023 Date: 10/19/2023 Date: 10/19/2023 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Pesticides - CA DCC

7 of 7

hhc

Sample ID: SA-231012-28285 Batch: hc8-hhc-1123 Type: In-Process Material Matrix: Concentrate - Distillate Unit Mass (g):

Received: 10/17/2023 Completed: 10/27/2023 Client

Highly Concentr8ed 1919 Northgate Blvd Sarasota, FL 34234 USA Lic. #: 2021-N-1909467

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Arsenic	1500	Lead	500
Cadmium	500	Mercury	1500

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Oxide	1
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Chloroform	60	Methanol	3000
Cyclohexane	3880	2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides - CA DCC

Analyte	Limit (ppb) Analyte	Limit (ppb)
Acephate	5000 Hexythiazox	2000
Acetamiprid	5000 Imazalil	30

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Aldicarb	30	Imidacloprid	3000
Azoxystrobin	40000	Kresoxim methyl	1000
Bifenazate	5000	Malathion	5000
Bifenthrin	500	Metalaxyl	15000
Boscalid	10000	Methiocarb	30
Carbaryl	500	Methomyl	100
Carbofuran	30	Mevinphos	30
Chloranthraniliprole	40000	Myclobutanil	9000
Chlorfenapyr	30	Naled	500
Chlorpyrifos	30	Oxamyl	200
Clofentezine	500	Paclobutrazol	30
Coumaphos	30	Phosmet	200
Daminozide	30	Piperonyl Butoxide	8000
Diazinon	200	Prallethrin	400
Dichlorvos	30	Propiconazole	20000
Dimethoate	30	Propoxur	30
Dimethomorph	20000	Pyrethrins	1000
Ethoprophos	30	Pyridaben	3000
Etofenprox	30	Spinetoram	3000
Etoxazole	1500	Spinosad	3000
Fenhexamid	10000	Spiromesifen	12000
Fenoxycarb	30	Spirotetramat	13000
Fenpyroximate	2000	Spiroxamine	30
Fipronil	30	Tebuconazole	2000
Flonicamid	2000	Thiacloprid	30
Fludioxonil	30000	Thiamethoxam	4500

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) Analyte	Limit (ppm)
B1	5 B2	5
G1	5 G2	5
Ochratoxin A	5	

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories is non-detected uncertainty upon request.